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Introduction

Secret
message

Ciphertext

U —— Encryption

. X

Shared common ‘
randomness R

1(U; X)=D(Rux IRy Px) = 2ux Rux (ux)log

& Rux W) =Ry (WP (X) Vux

X —

Decryption — U

R

B A system satisfies perfect secrecy if I(U; X) = 0.

Rux (ux)
Ry (U)Px (X)

B Error-free means H(U|XR)= 0, i.e., U = g(X, R).
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Introduction

B Perfect secrecy was studied in [Shannon1949]
[Massey 1988].

B Theorem [Shannon’s perfect secrecy theorem]
| f I(U; X)=0and H(U | RX) =0, then
H(R) > H(U)
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Introduction

B Definition 1 A cipher system is called
an Error-free Perfect-Secrecy (EPS) system if

HU| RX)=0 zero decoding error

I(U;X)=0 perfect secrecy

|(U;R)=0 no side information

U——

Pxur X X— 9(X,R) —U

encryption : decryption
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L ower Bounds on Resources

B Theorem 1 Let ‘U be the support of U. For an EPS system

{R, U, X},
max, Py (X) < \’U\_l,

and max, P (r) < \U\_l.
B Consequently,
H(X)>log U,
and H(R)>log U,

B If the source is not uniform, log |U| > H(U) and hence,
H(R) > H(U)
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Proof:}
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length =1
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L The height
of each cell
= Py(u)

2

U The width
of each cell
= Pg(r)

M

Due to I(U;R) =0, the area of each cell
= Py(u) Pr(r) = Pyr(u, 1)
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Each cell can have more than one values
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Due to H(U|XR) = 0, the same value of X cannot be
assigned to the same column.
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Due to H(U|XR) = 0, the same value of X cannot be
assigned to the same column.
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M

Consider X = 1.
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1 2 3 4 5 6 ..
111 1 1
2 1 1
U
M 1

For 1<i1 <M,
the total green
area in Row i is

Pyu(1,1).

The total length
of the red lines
iIn Row i IS
Pyu(Li) / Py(i)
=Pyu(d|i)

= Py (1)

due to 1(U;X)=0

Since the total length of all red lines Is less or equal to 1,

M P, (1) <1, and hence Py(1) <M1
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Lower Bounds on Resources

B Theorem 1 Let “U be the support of U.

H(U |RX)=0

( l ) max, P (x)s\’url H(X)Zlog\fU\
I(U;X)=0 = x X =

I(U;R)=0 max, Pr(r) </U H(R)>log/U

B H(R) measures the initial key requirement

B H(X) measures the number of channel use

B Data compression cannot help to reduce H(X)

B These are constrained non-Shannon type inequalities
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Countably Infinite ‘U

B Theorem 2 No EPS system can be constructed for |U| = oo,
l.e., U is defined on a countably infinite support or a
support with unbounded size.

B Theorem 1 shows that H(R) and H(X) is large if the cardinality of
the support of U is large regardless how small H(U) is.

B |f |'U| = =, at least one of the following assumptions has to be
dropped.
HU| RX)=0 zero decoding error

I(U;X)=0 perfect secrecy

|(U;R)=0 no side information
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Achievablity Part

B Theorem 3 If |'U| < «, there exists an EPS system such that
H(X) = H(R) = log |'U].

B Proof: One-time pad.

mLetM=|U|.

B et R be uniformly distributed in {1, 2, ..., M}.
B letX=(U+R)mod M.
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Constrained non-Shannon Type
Inequality

m Corollary 4 If H(U|RX) =1(U; X) = I(U; R) =0, then
aHU) < gH(X)
where logarithms are with respect to base a.

® Proof: By Theorem 1,
HU)<log U < H(X).

B Therefore,
al ) <y <ai ),

B Remark: Corollary 4 generalizes Theorem 1 in [Matus
2006], which has an extra assumption
H(X|UR) = H(R|UX) = 0.
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Example

B Suppose the sender and the receiver share a secret
key R ={B,, B,, ..., B}, where B, are I.1.d. with
distribution Pg such that P; (0) = Pg (1) = 0.5.

B LetP,(0)=0.5and Py(1) = Py(2) = 0.25.

H Let /PBn+1
((0,B31) ifU=0

(U{,U5)=<(,0) if U =1

(1) ifU =2

B Let X =(U]®B,Ub®B,).

B The receiver can decode (U1,U%) from X and R.
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Example (cont’)

B P,(0)=0.5and Py(1) = P,(2) = 0.25.

R’ (B3,B4 ..... Bn,Bn+l) ifU :O
(B3,By4,...,Bp) IfU=1or?2

B The expected key consumption:

R, (0)-1+R, (0)-2+R, (2)-2=15
=HU)
= 1(R;UX)

B The residual R’ can be used in the next round.
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Multiple Use

Shared common Randomness

R
First ciphertext
First message U __{ Pyru X
Second ciphertext
Second message V ]l Pypv — Y
B The system satisfies
HU|RX)=0 HV |RXY)=0

1(U;X)=0 | (UV; XY)=0

1(U:R)=0 1(V:R)=0
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Multiple Use (Justification 1)

B Theorem 5 If 1(UV;XY)=H(U |RX)=H(V |RXY)=0

and I(U;R)=1(V;R)=0,
then HV|U)<H(R|U, X)

Proof: Constrained Shannon type inequality

B After the first transmission, the maximum amount of
Information that can still be transmitted secretly will be
upper bounded by H(R| UX) = H(R) - I(R;UX)

® H(R) Is the size of the key shared at the beginning.

B |(R; UX) seems to be the “amount of key” that has
been consumed during the first transmission.
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Multiple Use (Justification 2)

B Suppose an EPS system
(Ui, R;, Xi) Is continuously
and independently used.

U, — F)><|UR | X1 B Both the sender and the

R1' receiver know {(U;, R;, X)),
1=1,2,...}
U= Py % = Suppose the sender and
R l the receiver aims to
2

generate a new common
secret key S™= (S, ..., S,)
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Multiple Use (Justification 2)

B The new common secret key S™ = (S, ..., S).

B Suppose S; are I.1.d. with generic random variable S.

B We require
1(S™ul, xH=0 forall j
H(S™ RI,xJy=0 forsufficiently large j

B Using S"will not disclose any information about the
previous system uses

B Both sender and the receiver can generate the same
S"without any error.
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Multiple Use (Justification 2)

B Let N, be a random variable such that
H(S™ RNm xNmy =g

where R™m = (Ry,..,Ry_) and XM =(Xq,.., Xy ).

 m Itis sufficient to use the EPS system N times to
generate S™.

B N_ Is random because the realization of N, depends
on the realizations of {(U;, R;, X)), 1=1, 2, ... }.

H(ES™)
B We are interested to know  g[N ]

B Roughly speaking, this is the expected rate of
generating a new key per system use.
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Multiple Use (Justification 2)

B Theorem 6 Consider a sequence of I.i.d. EPS system
{(U;, R, X)), 1=1, 2, ...} with generic random variables
(U, R, X). For any given P and positive integer m, we
can construct S™ from N_ system uses such that

1(s™:ul,x1)=0 forall j
H(S™ RNm xNmy—o

lim
M-—00 E[Nm

> H (R UX).

B Furthermore, H(s™

E[Npy]

H(R| UX) >
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Multiple Use (Justification 3)

® H(R | X, U) is the amount of key that can be extracted
after each use of the system

B |(R;XU) is the expected key consumption in every use
of an EPS system

B Theorem 7 For any EPS system,
|(R;UX)=H(R)-H(R| X, U)>H(U)

U A X
I(R,UX)=HU) < I(R;X)=0 @




Min. Expected Key Consumption

B Example 2 Suppose U and R are independent and
both uniformly distributed on sets {0, 1, ..., 2'- 1} and
{0, 1, ..., 22- 1}, respectively, where i <j.

B R’ is | random bits extracted from R
HX=U®R..

B I(RUX)=H(R)-H(R|UX)=H(R)-H(R|R)=]-(]J-1)
=H)
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Partition Code

B Let M=|U| and assume M < o,
B let ¥= (v, ..., th) € Nand 0=3M y;

M Definition 2 A partition code ((¥)
encodes U as follows.

B Seti=U.

B A’ is randomly picked from the set
{1, ..., w} with a uniform distribution.

W Let A=Y i +A-1

R be uniformly distributed on the set
{0, 1, ..., 0-1}and X=(A + R) mod 6.

4

W>

Wm
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Partition Code

B Partition code satisfies all the constraints in an EPS
system.

B Furthermore,
H(X)=H(R)=Ilogé
and
I(RU,X)=3M R, (i)log§=H(U>+D(F1J 1Qu)
|

where Qi) = 6y,
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Min. Expected Key Consumption

B Theorem 8 Suppose P (u) is rational for all u. Let & be
an integer such that 8- P(u) is an integer for all u.
Let ¥'= () with w; = 8- P,(u). Then the partition code
C((¥) achieves the minimum expected key
consumption, i.e., I(R; U, X) = H(U).

® H(X) represents the number of channel uses to
convey the ciphertext X.

B |[n addition to minimizing I(R; U, X), we want to
minimize H(X) simultaneously
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Min. Expected Key Consumption

B Theorem 9 Let X, R, and ‘U be the supports of X, R, and U,
respectively.

H(U |RX)=0)

1 (U;X)=0 . maxy Py (X) <inf, ey Ry (u)

1(U;R)=0 max, Pg(r) <infyeq Ry (U)

I(R;X)=0 |

B Note that inf,cqy Ry (u) < \’U\‘l where equality holds if and
only if P is a uniform distribution.
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Min. Expected Key Consumption

B Corollary 10 Suppose {R,,, U,,, X} satisfy
HUp Ry Xp)=1Up; Xp)=1Up;Rp) =1(Ry; Xn) =0
and H(U,) > 0 for all n. Then

B Theorem 11 Suppose {R, U, X} satisfy
HWU |RX)=1U:X)=1U;R)=1(R;X)=0.
If P, (u) is irrational for any u € ‘U, then

[X]=|R| = co.
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Constrained non-Shannon Type
Inequalities

U X U

&
=

Thm. 1 in [Matus 2006] Thm. 1-3, Cor. 4

U X U X

5
i5

Ch. 15 in [Yeung 2008] Thm. 9, Cor. 10, Thm. 11 ,,



Min. Number of Channel Uses

B Theorem 1 tells that H(X) > log |U].
B We aim to minimize I(R; XU) subject to H(X) = log |'U|.

B If one-time pad is used,
H(U) <log |'U| = H(X) = H(R) = I(R; XU).

M The effective key consumption I(R; XU) is not minimal
when the source U is not uniform.
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Min. Number of Channel Uses

B Theorem 12 For an EPS system, if H(X) = log |"U], then
I(R; UX) = log |'U| and H(X|RU) = 0.
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A Fundamental Tradeoff

B The minimum expected key consumption and the minimum
number of channel use cannot be achieved simultaneously.

I(R;UX)
log |'U| [

H(U)

Theorem 12

/ Theorem 9

/ Partition Code

L H(X)
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Conclusion

We have studied perfect-secrecy systems with the assumption
that the message and the secret key are independent.

Under this setup, we have shown a new bound log |'U| < H(R)
which is tighter than the one H(U) < H(R).

If |'U| = o0, N0 security system can simultaneously achieve:
) perfect secrecy, ii) zero decoding error, iii) no side information.

A new notion called effective key consumption I(R;UX) is defined.
It measures the amount of key used in an EPS system.

If P, is not uniform, the expected key consumption and the
number of channel use cannot be minimized at the same time.

There exists a fundamental tradeoff between these two
parameters.
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