

Error-Free Perfect-Secrecy Systems

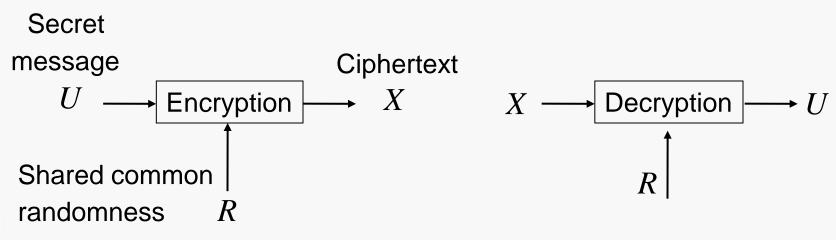
Siu-Wai Ho

Institute for Telecommunications Research University of South Australia

collaborated with Terence Chan, Chinthani Uduwerelle, and Alex Grant

Apr 13 2011

Introduction



• A system satisfies perfect secrecy if I(U; X) = 0.

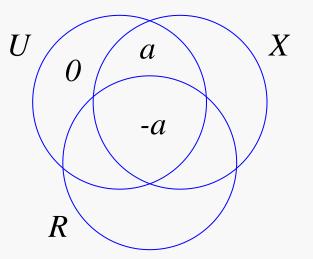
 $I(U;X) = D(P_{UX} || P_U P_X) = \sum_{ux} P_{UX}(ux) \log \frac{P_{UX}(ux)}{P_U(u)P_X(x)} = 0$ $\Leftrightarrow P_{UX}(ux) = P_U(u)P_X(x) \quad \forall u, x$

Error-free means H(U/XR) = 0, *i.e.*, U = g(X, R).

Introduction

- Perfect secrecy was studied in [Shannon1949] [Massey 1988].
- Theorem [Shannon's perfect secrecy theorem]
 If *I*(*U*; *X*) = 0 and *H*(*U* | *RX*) = 0, then

 $H(R) \ge H(U)$



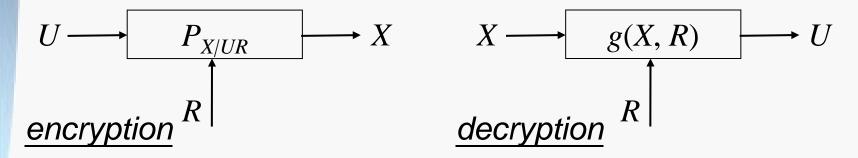
Introduction

Definition 1 A cipher system is called an Error-free Perfect-Secrecy (EPS) system if

 $H(U \mid RX) = 0$ zero decoding error

I(U; X) = 0 perfect secrecy

I(U;R) = 0 no side information

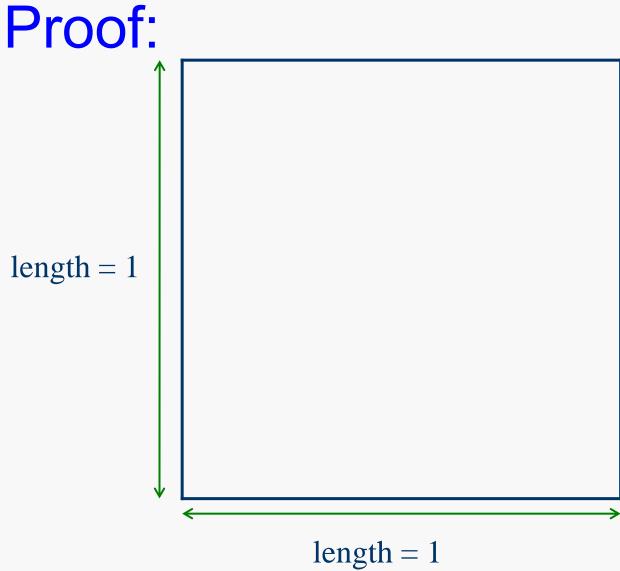


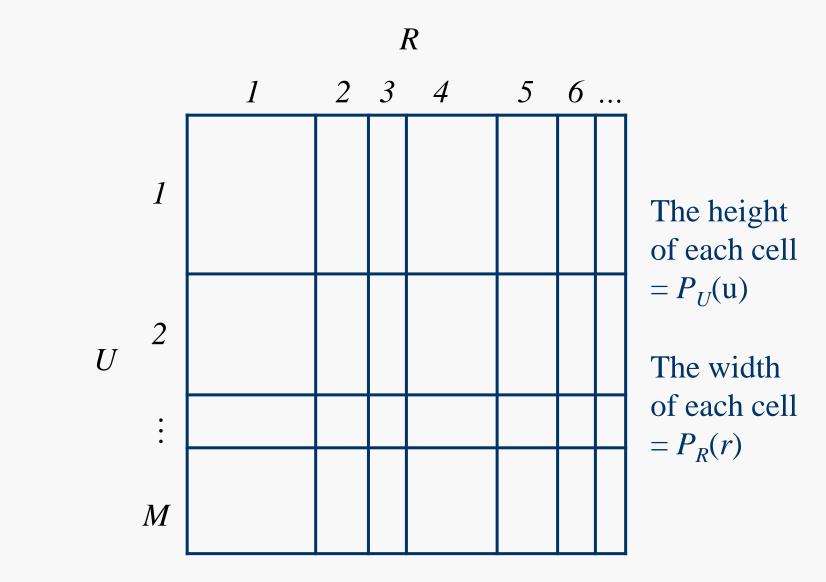
Lower Bounds on Resources

Theorem 1 Let *U* be the support of *U*. For an EPS system {*R*, *U*, *X*}, max_{*x*} *P*_{*X*}(*x*) ≤ |*U*|⁻¹, and max_{*r*} *P*_{*R*}(*r*) ≤ |*U*|⁻¹.
Consequently, $H(X) \ge \log |\mathcal{U}|,$

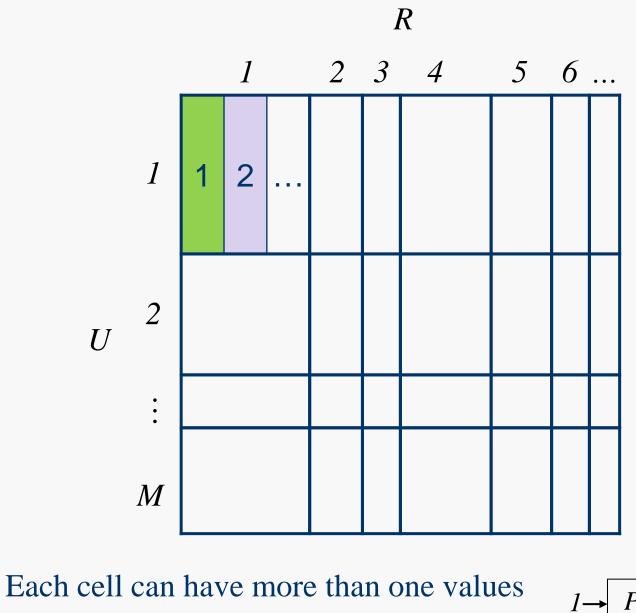
and $H(R) \ge \log |\mathcal{U}|.$

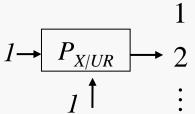
If the source is not uniform, $\log |\mathcal{U}| > H(U)$ and hence, H(R) > H(U)





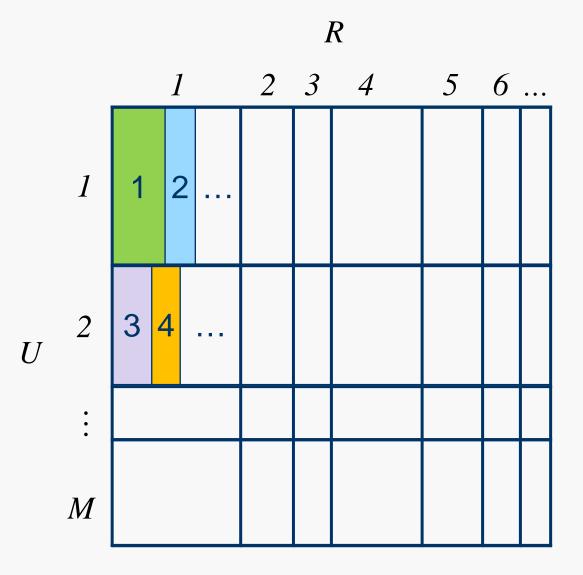
Due to I(U;R) = 0, the area of each cell = $P_U(u) P_R(r) = P_{UR}(u, r)$



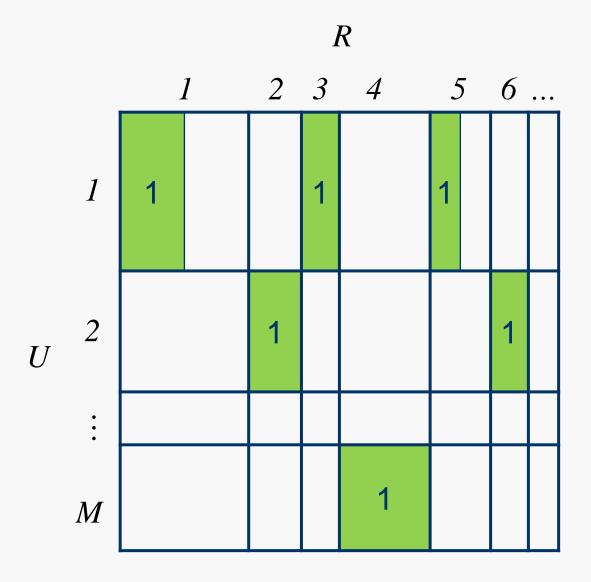


R 2 3 4 5 6 ... 1 1 2 1 . . . 3 2 1 U• M

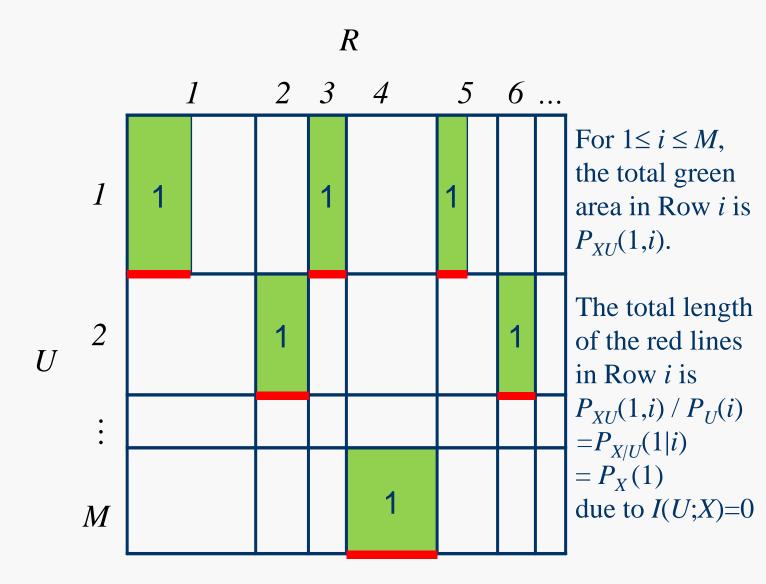
Due to H(U|XR) = 0, the same value of X cannot be assigned to the same column.



Due to H(U|XR) = 0, the same value of X cannot be assigned to the same column.



Consider X = 1.



Since the total length of all red lines is less or equal to 1, $M P_X(1) \le 1$, and hence $P_X(1) \le M^{-1}$

Lower Bounds on Resources

• Theorem 1 Let U be the support of U.

 $\begin{array}{c} H(U \mid RX) = 0\\ I(U;X) = 0\\ I(U;R) = 0 \end{array} \right\} \Rightarrow \begin{array}{c} \max_{x} P_X(x) \le |\mathcal{U}|^{-1} \\ \max_{r} P_R(r) \le |\mathcal{U}|^{-1} \end{array} \Rightarrow \begin{array}{c} H(X) \ge \log |\mathcal{U}| \\ H(R) \ge \log |\mathcal{U}| \end{array}$

- \blacksquare *H*(*R*) measures the initial key requirement
- H(X) measures the number of channel use
- **D**ata compression cannot help to reduce H(X)
- These are constrained non-Shannon type inequalities

Countably Infinite \mathcal{U}

- Theorem 2 No EPS system can be constructed for $|\mathcal{U}| = \infty$, i.e., U is defined on a countably infinite support or a support with unbounded size.
 - Theorem 1 shows that H(R) and H(X) is large if the cardinality of the support of *U* is large regardless how small H(U) is.
 - If $|\mathcal{U}| = \infty$, at least one of the following assumptions has to be dropped.

 $H(U \mid RX) = 0$ zero decoding error

I(U;X) = 0 perfect secrecy

I(U;R) = 0 no side information

Achievablity Part

Theorem 3 If $|\mathcal{U}| < \infty$, there exists an EPS system such that $H(X) = H(R) = \log |\mathcal{U}|$.

Proof: One-time pad.

• Let $M = |\mathcal{U}|$.

• Let *R* be uniformly distributed in $\{1, 2, ..., M\}$.

• Let $X = (U + R) \mod M$.

Corollary 4 If H(U|RX) = I(U;X) = I(U;R) = 0, then $\left[a^{H(U)}\right] \le a^{H(X)}$

where logarithms are with respect to base *a*.

Proof: By Theorem 1,

 $H(U) \le \log |\mathcal{U}| \le H(X).$

Therefore,

$$a^{H(U)} \leq |\mathcal{U}| \leq a^{H(X)}.$$

Remark: Corollary 4 generalizes Theorem 1 in [Matúš 2006], which has an extra assumption H(X|UR) = H(R|UX) = 0.

Example

Suppose the sender and the receiver share a secret key $R = \{B_1, B_2, \dots, B_n\}$, where B_i are i.i.d. with distribution P_R such that $P_R(0) = P_R(1) = 0.5$. • Let $P_{II}(0) = 0.5$ and $P_{II}(1) = P_{II}(2) = 0.25$. $P_{B_{n+1}} = P_B$ Let $(U'_1, U'_2) = \begin{cases} (0, B_{n+1}) & \text{if } U = 0\\ (1, 0) & \text{if } U = 1\\ (1, 1) & \text{if } U = 2 \end{cases}$

• Let $X = (U'_1 \oplus B_1, U'_2 \oplus B_2).$

The receiver can decode (U'_1, U'_2) from X and R.

Example (cont')

$$P_U(0) = 0.5 \text{ and } P_U(1) = P_U(2) = 0.25.$$

$$R' = \begin{cases} (B_3, B_4, \dots, B_n, B_{n+1}) & \text{if } U = 0\\ (B_3, B_4, \dots, B_n) & \text{if } U = 1 \text{ or } 2 \end{cases}$$

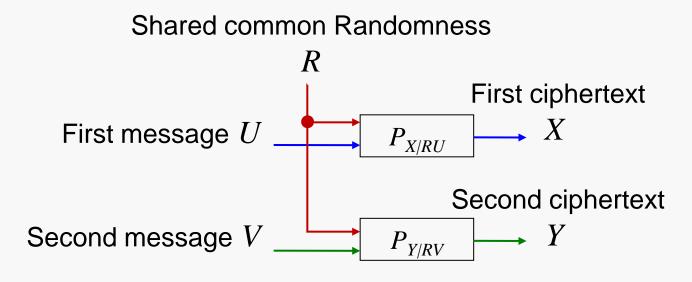
The expected key consumption:

$$P_U(0) \cdot 1 + P_U(1) \cdot 2 + P_U(2) \cdot 2 = 1.5$$

= H(U)
= I(R;UX)

The residual R' can be used in the next round.

Multiple Use



The system satisfies

H(U | RX) = 0 H(V | RXY) = 0 I(U;X) = 0 I(UV;XY) = 0I(U;R) = 0 I(V;R) = 0

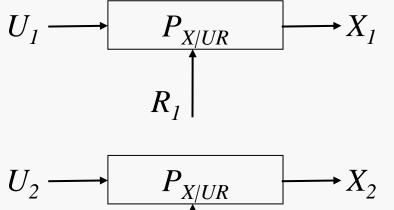
• Theorem 5 If I(UV; XY) = H(U | RX) = H(V | RXY) = 0

and I(U;R) = I(V;R) = 0,

then $H(V|U) \le H(R|U,X)$

Proof: Constrained Shannon type inequality

- After the first transmission, the maximum amount of information that can still be transmitted secretly will be upper bounded by H(R/UX) = H(R) I(R;UX)
- \blacksquare H(R) is the size of the key shared at the beginning.
- I(R; UX) seems to be the "amount of key" that has been consumed during the first transmission.



 R_{2}

- Suppose an EPS system (U_i, R_i, X_i) is continuously and independently used.
- Both the sender and the receiver know { (U_i, R_i, X_i) , i = 1, 2, ...}
- Suppose the sender and the receiver aims to generate a new common secret key $S^m = (S_1, ..., S_m)$

• The new common secret key $S^m = (S_1, ..., S_m)$.

Suppose S_i are i.i.d. with generic random variable S.
 We require

 $I(S^{m}; U^{j}, X^{j}) = 0 \quad \text{for all } j$ $H(S^{m} | R^{j}, X^{j}) = 0 \quad \text{for sufficiently large } j$

- Using S^m will not disclose any information about the previous system uses
- Both sender and the receiver can generate the same S^m without any error.

• Let N_m be a random variable such that

$$H(S^m | R^{N_m}, X^{N_m}) = 0$$

where $R^{N_m} = (R_1, ..., R_{N_m})$ and $X^{N_m} = (X_1, ..., X_{N_m})$.

It is sufficient to use the EPS system N_m times to generate S^m .

■ N_m is random because the realization of N_m depends on the realizations of { $(U_i, R_i, X_i), i = 1, 2, ...$ }. $H(S^m)$

- We are interested to know $\mathbf{E}[N_m]$
- Roughly speaking, this is the expected rate of generating a new key per system use.

Theorem 6 Consider a sequence of i.i.d. EPS system {(U_i, R_i, X_i), i = 1, 2, ...} with generic random variables (U, R, X). For any given P_S and positive integer m, we can construct S^m from N_m system uses such that

$$I(S^{m}; U^{j}, X^{j}) = 0 \text{ for all } j$$
$$H(S^{m} | R^{N_{m}}, X^{N_{m}}) = 0$$

$$\lim_{m \to \infty} \frac{H(S^m)}{\mathbf{E}[N_m]} \ge H(R \mid UX).$$

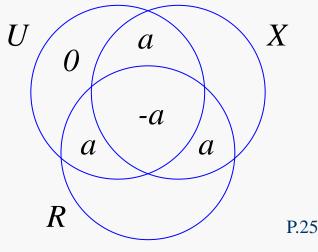
Furthermore, $H(R \mid UX) \ge \frac{H(S^m)}{\mathbf{E}[N_m]}$

Then

- H(R | X, U) is the amount of key that can be extracted after each use of the system
 - I(R;XU) is the expected key consumption in every use of an EPS system

■ Theorem 7 For any EPS system, $I(R;UX) = H(R) - H(R | X,U) \ge H(U)$

 $I(R;UX) = H(U) \iff I(R;X) = 0$



- Example 2 Suppose U and R are independent and both uniformly distributed on sets {0, 1, ..., 2ⁱ - 1} and {0, 1, ..., 2^j - 1}, respectively, where i ≤ j.
- \blacksquare R' is *i* random bits extracted from R

 $\blacksquare X = U \oplus R'.$

I(R;UX) = H(R) - H(R | UX) = H(R) - H(R | R') = j - (j - i)= H(U)

Partition Code

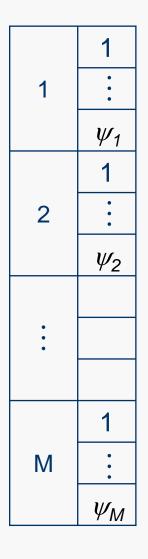
- Let $M = /\mathcal{U}/$ and assume $M < \infty$.
- Let $\Psi = (\psi_1, ..., \psi_M) \in \mathcal{N}^M$ and $\theta = \sum_{i=1}^M \psi_i$
- Definition 2 A partition code $C(\Psi)$ encodes U as follows.

• Set
$$i = U$$
.

• A' is randomly picked from the set $\{1, ..., \psi_i\}$ with a uniform distribution.

• Let
$$A = \sum_{j=1}^{i-1} \psi_j + A' - 1$$
,

R be uniformly distributed on the set $\{0, 1, ..., \theta - 1\}$ and $X = (A + R) \mod \theta$.



Partition Code

Partition code satisfies all the constraints in an EPS system.

Furthermore,

$$H(X) = H(R) = \log \theta$$

and

$$I(R;U,X) = \sum_{i=1}^{M} P_U(i) \log \frac{\theta}{\psi_i} = H(U) + D(P_U || Q_U),$$

where $Q_U(i) = \theta^{-1} \psi_i$

Theorem 8 Suppose $P_U(u)$ is rational for all u. Let θ be an integer such that $\theta \cdot P_U(u)$ is an integer for all u. Let $\Psi = (\psi_i)$ with $\psi_i = \theta \cdot P_U(u)$. Then the partition code $C(\Psi)$ achieves the minimum expected key consumption, i.e., I(R; U, X) = H(U).

- H(X) represents the number of channel uses to convey the ciphertext *X*.
- In addition to minimizing I(R; U, X), we want to minimize H(X) simultaneously

- Theorem 9 Let X, \mathcal{R} , and \mathcal{U} be the supports of X, R, and U, respectively.
 - H(U | RX) = 0 I(U; X) = 0 I(U; R) = 0 I(R; X) = 0 H(U | RX) = 0 H(
- Note that $\inf_{u \in \mathcal{U}} P_U(u) \le |\mathcal{U}|^{-1}$ where equality holds if and only if P_U is a uniform distribution.

Corollary 10 Suppose $\{R_n, U_n, X_n\}$ satisfy $H(U_n | R_n X_n) = I(U_n; X_n) = I(U_n; R_n) = I(R_n; X_n) = 0$ and $H(U_n) > 0$ for all n. Then $\lim_{n \to \infty} H(U_n) = 0 \implies \lim_{n \to \infty} H(R_n) = \lim_{n \to \infty} H(X_n) = \infty$

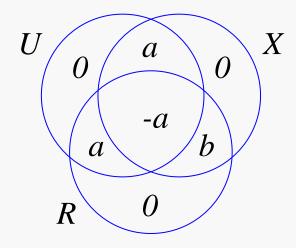
Theorem 11 Suppose $\{R, U, X\}$ satisfy H(U | RX) = I(U; X) = I(U; R) = I(R; X) = 0.If $P_U(u)$ is irrational for any $u \in U$, then $|X| = |\mathcal{R}| = \infty.$

Constrained non-Shannon Type Inequalities

X

0

a



Thm. 1 in [Matúš 2006]

a

-*a*

Ch. 15 in [Yeung 2008]

U

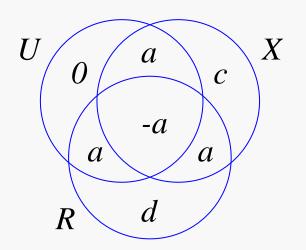
0

a

R

 $U \bigcirc a \land X$ $-a \land b$ $R \land d$

Thm. 1-3, Cor. 4



Thm. 9, Cor. 10, Thm. 11 P.32

Min. Number of Channel Uses

- Theorem 1 tells that $H(X) \ge \log |\mathcal{U}|$.
- We aim to minimize I(R; XU) subject to $H(X) = \log |\mathcal{U}|$.

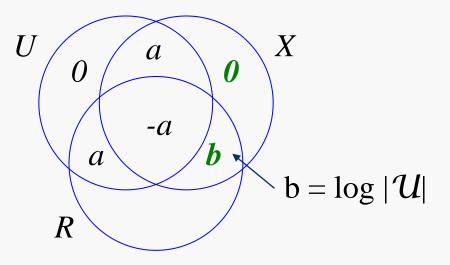
■ If one-time pad is used,

 $H(U) \leq \log |\mathcal{U}| = H(X) = H(R) = I(R; XU).$

The effective key consumption I(R; XU) is not minimal when the source U is not uniform.

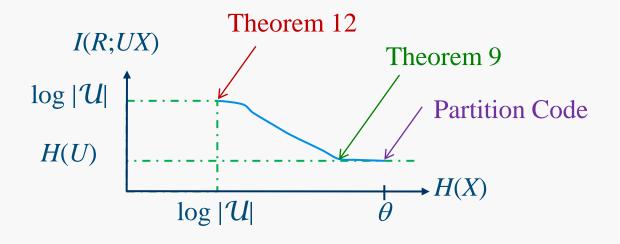
Min. Number of Channel Uses

Theorem 12 For an EPS system, if $H(X) = \log |\mathcal{U}|$, then $I(R; UX) = \log |\mathcal{U}|$ and H(X|RU) = 0.



A Fundamental Tradeoff

The minimum expected key consumption and the minimum number of channel use cannot be achieved simultaneously.



Conclusion

- We have studied perfect-secrecy systems with the assumption that the message and the secret key are independent.
- Under this setup, we have shown a new bound $\log |\mathcal{U}| \le H(R)$ which is tighter than the one $H(U) \le H(R)$.
- If |U| = ∞, no security system can simultaneously achieve:
 i) perfect secrecy, ii) zero decoding error, iii) no side information.
- A new notion called effective key consumption *I*(*R*;*UX*) is defined.
 It measures the amount of key used in an EPS system.
- If P_U is not uniform, the expected key consumption and the number of channel use cannot be minimized at the same time.
- There exists a fundamental tradeoff between these two parameters.

Q & A